TOMAS: Tool for Object oriented Modelling And Simulation;

User manual

1. Introduction

TOMAS offers methods for discrete process simulation running at maximum speed, and adds functionality to support the user friendly development of simulation models.

Four object classes are introduced:

· TomasElement to control the element’s process.

· TomasShape to visualize the movement of elements

· TomasQueue to model waiting time processes conveniently

· TomasDistribution to be able to model stochastic behaviour.

A form TomasForm is provided, so the user gets possibilities to control the simulation in an interactive way. For each function at the the TomasForm there is also a procedural counterpart. For example pressing the menu item “Start” can be programmed by calling “StartSimulation”.

In this document the public methods and attributes will be described. These paragraphs are sufficient if you only want to develop models with the given source code.

If you are interested in changing or extending the source code, please make contact to one of the developers mentioned at the web site.
2. Methods for process control

The current time of the simulation can always be called by the function TNow (It is not called Now to prevent confusion with the standard Delphi method Now).

The methods for process control are:

Procedure StartSimulation;
 (or press Start at TomasForm)

StartSimulation starts the simulation; the sequencing mechanism takes control and only returns when the user clicks 'Control-Quit', issues a StopSimulation(T) statement or closes the Tomas form. The sequencing mechanism then returns to the statement in your model following the StartSimulation-statement.

Procedure StopSimulation(T);
Sets the stop time of the simulation to T. As soon as the simulation clock reaches T the simulation stops and returns to the statement directly following the StartSimulation statement.

Function RunStatus: SimulationRunStatus;

Returns the current status of the simulation run. Possible values are:

RunInit: the run hasn’t started yet

RunFinished: the simulation run has finished

RunInterrupted: the simulation run is running, but currently interrupted

Running: the simulation run is active and running

RunStepping: the simulation run is active and running stepwise (see TomasForm).

Procedure Hold(T: Double);

This method suspends the current process during T time-units. The process will become current again at TNow + T.

Procedure StandBy;

The method Standby suspends the current process until some condition is met. After each event the condition is tested. The usual programming code to use it is:

While Condition = FALSE Do

Standby;

Note: A Standby statement can be very 'expensive' because the condition is checked EVERY EVENT. In cases where the majority of events doesn't influence the condition, it is better uses another construction. For example use Suspend instead of StandBy and let the element causing the condition to become TRUE, resume the process.

Procedure Suspend;
The Suspend method suspends the current process indefinitely. Some external process is needed to make this process current again (see the Resume method of TomasElement).

Procedure Finish;

The Finish method terminates the current process. The owner of the process (a TomasElement instance) remains allocated.

Procedure FinishAndDestroy;

The FinishAndDestroy method terminates the current process and destroys the owner of the process.

Warning: Don’t use “Destroy” or “Free” in the process method of an element. By using FinishAndDestroy a correct return to the sequencing mechanism is guaranteed, which handles the release of the instance.
Procedure ResetTomas;
This procedure resets all simulation data concerning simulation status, TomasElements and TomasQueues. It is meant to support multiple runs during one program. After ResetTomas all elements and queues are destroyed and the simulation time is set to 0 again.

3. Object classes

The TomasElement class owns methods for control over the process of the Element (whenever it is not the current process), queuing methods and some other useful methods.

The default process method of a TomasElement is a virtual method. Remember to override this method in your TomasElement descendants by putting it in the published section.

The methods of TomasElement are:

Constructor Create(S: String);
Creates a new TomasElement with name S. If more instances of the same class with same name are created, TOMAS adds automatically a sequence number to the name.

Example:

 ShipElement = class(TomasElement);

//Create some instances

Ship1:=ShipElement.Create('Feeder');

Ship2:=ShipElement.Create('Deepsea');

Ship3:=ShipElement.Create('Feeder');

//This code generates 3 shipElements named Feeder, Deepsea and Feeder2.
Destructor Destroy;

This method destroys the instance. Advice: always use the standard ‘free’ method to destroy the instance. This destroy method is called implicitly by Free.

Procedure Start(T: Double);
Start is used to start the process-method at time T. Start is only allowed if the element’s state is ‘Data’ (see element-states).

Procedure Stop;

Stop is used to finish the process of the element now. The method CANNOT be called if the elements state is ‘Data’ already. If the element owns the current process, then Stop is the same as Finish.

Procedure StopAndLeave;

Finishes the process of the element now and destroys the element. The method CANNOT be called if the elements state is ‘Data’ already. If the element owns the current process, then StopAndLeave is the same as FinishAndDestroy.

Procedure Resume(T: Double);
Resume is used to reactivate the element's process-method. The reactivation point depends on the status of the element. If the status is ‘Passive’ the process is reactivated at the statement after the suspend-call. If the status is ‘Interrupted’ then the pending action (initiated by Hold, StandBy, Start or Resume), is resumed again, with the rest duration at the moment of interruption.

Procedure Cancel;

Cancel is used to suspend the element’s process indefinitely and to make the status ‘Data’. Cancel is therefore only allowed if the element’s state is ‘Passive’, ‘Interrupted’, ‘TimeScheduled’ or ‘StateScheduled’. The process can be scheduled again by means of ‘Start’.

Procedure Pause;

Pause interrupts the pending (scheduled) action of the process. This action must have been initiated by a call to Hold, StandBy, Start or Resume, so the element’s state must be ‘TimeScheduled’ or ‘StateScheduled’. The remaining time to the next event is saved and restored at the moment the Resume is called.

Procedure Interrupt;
Synonym of Pause. Interrupt has been replaced because it is a keyword of Delphi and a syntax print can be misleading. The method works however correctly.

The following methods support easy queue handling (see also TomasQueue).

Procedure EnterQueue(Q: TomasQueue);
EnterQueue puts the Element at the tail of the queue Q

Procedure EnterQueueInFront(Q: TomasQueue);
EnterQueueInFront puts the Element to the head of the queue Q.

Procedure EnterQueueSorted(Q: TomasQueue; SortingProc: SortProcedure);
EnterQueueSorted puts the Element in queue Q, sorted according the procedure of SortingProc;

SortingProc is of type “Function(C1,C2: Pointer): Boolean;”

Example:

In the following example shipElements are sorted in a shipqueue in ascending order of their length SH_Length.

 .

 Ship.EnterQueueSorted(ShipQueue, SortOnLength);

 .

 Function SortOnLength(C1,C2: Pointer): Boolean;

 Begin

 // the user knows that C1 and C2 represent ShipElements, so he can

 // typecast C1/C2.

 Result := (ShipElement(C1).SH_Length <= ShipElement(C2).SH_Length);

 End;

Procedure LeaveQueue(Q: TomasQueue);
The LeaveQueue method removes the element from the queue Q.

Function Successor(Q: TomasQueue): Pointer;

Successor returns the successor of the element in queue Q.

Function Predecessor(Q: TomasQueue): Pointer;

Predecessor returns the predecessor of the element in queue Q.

Function IsInQueue(Q: TomasQueue): Boolean;

The method IsInQueue returns TRUE if the element is in the queue Q, else it returns FALSE.

Function QueueTime(Q: TomasQueue): Double;

QueueTime returns the time when the Element entered the queue. If the element is not in the queue then an error is raised.

Function StatusToString: String;

StatusToString is ment for ease of use. It returns the current status as a string which can be used for tracing purposes.

Procedure WriteTrace(S: String);
Also for ease of use. WriteTrace writes directly into the simulation output (see TOMASForm in par. 5). By default the message is preceded by time and element name, so if WriteTrace('shows a message') is executed at time=10 for element named 'MyComp' then the line:

' 10.00 MyComp shows a message'

is added to the output.

TomasShape is a descendant class of TomasElement. A TomasShape element is a TomasElement with a shape, a position and an orientation. Methods are included to specify shape, position and orientation, and to describe movements of the TomasShape. A TomasShape is visualized at a separate form: The TomasAnimationForm. The unit containing this form is automatically included in TOMAS. So a TomasShape inherits all methods of a TomasElement and possesses above that the following methods:

Procedure GetPosition(Var X,Y,Z: Single);
Returns the current position of the TomasShape. If the shape is moving, the position is determined by means of linear interpolation.

Function GetPositionX: Single;

Returns the current X-position of the TomasShape. If the shape is moving, the X-position is determined by means of linear interpolation.

Function GetPositionY: Single;

Returns the current Y-position of the TomasShape. If the shape is moving, the Y-position is determined by means of linear interpolation.

Function GetPositionZ: Single;
Returns the current Z-position of the TomasShape. If the shape is moving, the Z-position is determined by means of linear interpolation.

Procedure GetOrientation(Var AX,AY,AZ: Single);

Returns the current orientation of the shape (in degrees).

Procedure AddBoxObject(X,Y,Z: Single; rm: TomasRenderMode;

 Color: TColor; Rx,Ry,Rz: Integer; Angle: Single; Dx,Dy,Dz: Single);
AddBoxObject adds a box-object to the TomasShape. The centre of the box is at position X,Y,Z relative to the origin of the Shape. The render mode is given by rm, the color is defined by Color. Rx, Ry and Rz represent the axis around which the box should be turned 'Angle' degrees. Dx, Dy, Dz represent the displacement relative to the box's origin. The origin of the box is its centre.

Procedure AddCircleObject(R: Single; Rm: TomasRenderMode; Color: TColor; Rx, Ry, Rz: Integer; Angle: Single; Dx, Dy, Dz: Single);
AddCircleObject adds a circle to the TomasShape with radius R. The render mode is given by rm, the color is defined by Color. Rx, Ry and Rz represent the axis around which the box should be turned 'Angle' degrees. Dx, Dy, Dz represents the displacement relative to the Shape's origin.

Procedure ReadShapeFromFile(FileName: String);
ReadShapeFromFile reads a complete appearance from file FileName. The format of data is not yet formalized. Just for example some '.geo' files are added to the Tomas-examples

Procedure Show(X,Y,Z: Single);
The Show method is used to define the position of a TomasShape and show it with its origin at world-position (X,Y,Z) in its current orientation.

Procedure Turn(Ax,Ay,Az: Single);
The Turn method turns the TomasShape. Ax, Ay or Az denote the number of degrees to turn around each axis. A positive value denotes a counter clockwise turn.

Procedure Hide;

The Hide method hides the TomasShape.

Procedure MoveTo(X, Y, Z, Step, Speed: Single);
The MoveTo-method moves the TomasShape from its current position in a straight line to (X,Y,Z) with speed 'Speed' and shows it every 'Step'-distance units.

Procedure DMoveTo(X, Y, Z, Step, Speed: Single);
The DMoveTo-method moves the TomasShape (X,Y,Z) - distance units from the current position with speed 'Speed' and shows it every 'Step'- distance units.

Procedure Bend2D(AX, AY, AZ, Radius, AStep, Speed: Single);
The Bend2D-method performs a circular bend with the TomasShape. AX, AY or AZ denote the number of degrees to turn. Because of the 2-dimensional nature only one of these can be nonzero. If the value is positive the bend will be counter clockwise, if negative it will be clockwise. 'Radius' is the bend radius, while the bend is performed with speed 'Speed'. Every 'AStep' distance-units the TomasShape will be refreshed on the screen.

Procedure ConnectWith(Shape: TomasShape; X,Y,Z: Single);
The ConnectWith-method combines this TomasShape with the TomasShape 'Shape'. This TomasShape is placed at offset X,Y,Z of the centre of the other TomasShape. Every movement of Shape will now automatically be performed on this TomasShape as if they are moving together.

Procedure DisConnect;
The DisConnect-method releases this TomasShape from the TomasShape it has been connected with.

Procedure SetRenderMode(rm: TomasRenderMode);
SetRenderMode sets the render mode of the TomasShape.

The render mode can be:

rmWireframe

rmSolid

rmSolidShade

rmSolidTexture

rmShadedTexture.

Procedure SetColor(Color: TColor);
SetColor sets the color of the TomasShape.
Useful methods in controlling the animation are:

Procedure SetAnimationDisplayInterval(T: Double);
Drawing a complete 3-dimensional image on the screen can be time consuming. To speed up animation you can specify the display interval of the animation screen (in simulation time units).

Procedure SetScreenString(S: String);
This method puts the string S in the upper left corner of the animation screen everytime it is refreshed.

Procedure SetAnimation;
SetAnimation shows the animation form, by which visualization is automatically started.

Procedure SetBackGround(P: TBackGround);
SetBackGround sets the procedure to draw a background-image on the animation screen.The background procedure is of type: TBackGround = Procedure;

Procedure SetBackGroundColor(Color: TColor);

Sets the background color of the animation screen.

Procedure DrawLine(X1,Y1,Z1,X2,Y2,Z2: Single; Color: TColor);
Draws a straight line from (X1, Y1, Z1) to (X2, Y2, Z2) with color Color on the animation screen. The coordinates are world coordinates.

A TomasQueue is a basic class to easily handle waiting line situations, represent stock and work in progress or collecting elements in a sorted way.

Only TomasElements are allowed to enter a TomasQueue. Automatic gathering of statistical data is provided about queue contents and waiting-times.

The methods of TOMASQueue are:

Constructor Create(S: String);
Creates a new TomasQueue with name S.

Destructor Destroy;

This method destroys the instance. Advice: always use the standard ‘free’ method to destroy the instance. This destroy method is called implicitly by Free.

Procedure AddToTail(Comp: TomasElement);

AddToTail puts the element Comp at the tail of the queue.

Procedure AddToHead(Comp: TomasElement);

AddToHead puts the element Comp at the front of the queue.

Procedure AddSorted(Comp: TomasElement; SortingProc: SortProcedure);

AddSorted puts the element Comp in the queue, sorted according the procedure of SortingProc;

SortingProc is of type “Function(C1,C2: Pointer): Boolean.”

Example:

In the following example ShipElements are sorted in a shipqueue in ascending order of their length SH_Length.

 .

 ShipQueue.AddSorted(Ship, SortOnLength);

 .

 Function SortOnLength(C1,C2: Pointer): Boolean;

 Begin

 // the user knows that C1 and C2 represent

 // shipElements, so he/she can typecast C1 and C2.

 Result:= (ShipElement(C1).SH_Length <= ShipElement(C2).SH_Length);

 End;

Function AddSortedOn(Comp: TomasElement; SortingPar: Double);

AddSortedOn puts the element Comp in the queue, sorted according to the value of SortingPar; Sortingpar can be any double-typed value.
Example:

In the followinf example Ship elements are sorted in a shipqueue in ascending order of their length SH_Length.

.

ShipQueue.AddSortedOn(Ship,Ship.SH_Length);

.

Procedure AddBefore(Comp,BeforeComp: TomasElement);
AddBefore adds element Comp to the queue before element BeforeComp.

Procedure AddAfter(Comp,AfterComp: TomasElement);
AddAfter adds element Comp to the queue after element AfterComp.

Procedure Remove(Comp: TomasElement);

The Remove method removes the element Comp from the queue.

Function FirstElement: Pointer;

FirstElement returns the first TomasElement in the queue. If the queue is empty this method returns Nil.

Function LastElement: Pointer;

LastElement returns the last TomasElement in the queue. If the queue is empty this method returns Nil.

Function Successor(Comp: TomasElement): Pointer;

Successor returns the successor of element Comp in the queue. If Comp is the last element, this method returns Nil.

Function Predecessor(Comp: TomasElement): Pointer;

Predecessor returns the predecessor of element Comp in the queue. If Comp is the first element, this method returns Nil.

Function Contains(Comp: TomasElement): Boolean;

The Contains method returns True if the queue contains element Comp, else False.

Function IndexOf(TElm: TomasElement): Pointer;

Returns the index (starting from 1) of the position in the queue of TElm. If TElm is not in the queue the the function returns -1.

Function Element(Ix: Integer): Pointer;

Returns a reference to the Ix-th element in the queue. If Ix > Length of queue or Ix<1 The the result will be Nil.

Function ElementWithName(Nm: String): Pointer;

Returns the element with name Nm. If There is no such element in the queue, the result will be Nil.

Procedure ResetStatistics;

By this method all gathered statistics are reset to their initial value.

Function Copy: TomasQueue;

Copy returns a copy of the TomasQueue with all it’s contents.

Procedure Clear;

Clear removes all elements from the TomasQueue. The elements are not destroyed!

Function Move: TomasQueue;

Move copies the contents to a new TomasQueue and clears the contents of the calling TomasQueue.

property Name: String;

Returns the name of the queue.

property Length: Word;

Returns the current number of elements in the queue.

property ResetTime: Double;

Returns the last time ResetStatistics was issued. Zero if ResetStatistics wasn’t called yet.

property MeanLength: Double;

Returns the average number of elements in the queue since ResetTime.

property MinLength: Integer;

Returns the minimum number of elements in the queue since ResetTime.

property MaxLength: Integer;

Returns the maximum number of elements in the queue since ResetTime.

property MeanWT: Double;

Returns the average length of stay in the queue since ResetTime.

property MinWT: Double;

Returns the minimum length of stay in the queue since ResetTime.

property MaxWT: Double;

Returns the maximum length of stay in the queue since ResetTime.

property DirectPassed: Integer;

Returns the number of elements that passed the queue immediately since ResetTime.

property TotalPassed: Integer;

Returns the total number of elements that passed the queue since ResetTime. Elements currently in the queue are not contained in this number.
Distributions

To support the modelling of stochastic behaviour TOMAS offers distribution classes.

For sampling TOMAS uses a multiplicative random generator, so for each distribution you must provide a ‘seed’, which is a 32-bit integer. The generator has a cycle length of 231 –1.

The random generator itself is defined as:

function RAND(var Seed: integer): Double;

and returns a random number between 0 and 1.

The basic class is the TDistribution class with three methods:

Constructor Create(DSeed: Integer);

This method constructs an instance of type TDistribution with seed ‘DSeed’;

Function Sample: Double;

Sample returns a random sample of a uniform distribution between 0 and 1.

Function Mean: Double;

Mean returns the mean value of the distribution.

Descendant classes of TDistribution are the following (the sample methods aren’t described anymore).

a. TUniformDistribution = class(TDistribution)

Constructor Create(Seed: Integer; Lb,Ub: Double);
Creates a uniform distribution between lowerbound Lb and upperbound Ub

b. TExponentialDistribution = class(TDistribution)

Constructor Create(Seed: Integer; Mn: Double);
Creates an exponentialdistribution with mean Mn.

c. TNormalDistribution = class(TDistribution)

Constructor Create(Seed: Integer; Mean,Sigma: Double);
Creates a normal distribution with mean ‘Mean’ and standardeviation ‘Sigma’.

d. TTableDistribution = class(TDistribution)

By means of the TTableDistribution you can specify any distribution shape wanted.

Constructor Create(Seed: Integer; DType: DistributionTableType);
Creates a cumulative or discrete distribution as specified as ‘Dtype’. Dtype can have the values ‘cumulative’ or ‘discrete’.

Procedure AddValue(X,F: Double);
The table of the distribution is filled by AddValue. F must always be less or equal to 1. If the distribution is a cumulative distribution the highest F-value must be less or equal to 1.

A special case is the TInputDistribution. It is not a descendant of a TDistribution, but it has an attribute Distribution of type TDistribution. TInputDistribution is added to offer maximum run time flexibility. The user can specify the distribution’s shape and parameters by a string in an input file.

The TInputDistribution has of course a Sample method, just as the distribution classes above.

The main method is:

Constructor Create(DString: String);
Creates a distribution as specified in Dstring. Dstring should be formatted as one of the following:
‘Uniform(Parm1,Parm2),Seed’
‘Exponential(Parm1),Seed’

‘Normal(Parm1,Parm2),Seed’
‘Table(DistributionTableType,(X1,F1,X2,F2,...,Xn,Fn)),Seed’.
Only the first 3 characters of the distribution type are significant.

It can happen, that many distributions are needed. In these cases the specification of seeds is made easier by the use of the unit TomasSeeds. TomasSeeds contains 2000 predefined seed-values, that guarantee independent sampling for at least 1.000.000 samples.

You can refer to a seed by Seeds[i] where i can take a value between 1 and 2000.

General supporting methods

The next methods are implemented for ease of use and readability.

First of all the following functions return the status of a TomasElement, so you can use it without knowing the internal representation of the status. These methods are:

Function Data: ElementStatus;

Function Claiming: ElementStatus;

Function Passive: ElementStatus;

Function Interrupted: ElementStatus;

Function TimeScheduled: ElementStatus;

Function StateScheduled: ElementStatus;

Function Current: ElementStatus;
If you want to know the element of the current process you can use:

Function CurrentElement: TomasElement;

Analog to the WriteTrace method of a TomasElement a general method WriteToTrace is implemented.

Procedure WriteToTrace(S: String);
The method writes to the current output destination (see TOMASForm in par. 5).

Procedure SetOutputDestination(S: String);
This method redirects trace output to some user specified file with name S.

To redirect to the screen again specify ‘Screen’ for S.

TOMAS normally writes every event the current time to the screen. Because writing to screen is very time consuming in Windows, you can influence the time interval of writing this time to the screen. This is accomplished by:

procedure SetTimeDisplayInterval(T: Double);
SetTimeDisplayInterval sets the DisplayInterval of the simulationclock to T time-units. If T = 0 the the clock is displayed at every event.

Procedure SetTimerProc(TimProc: TimerProcedure);
You can specify a procedure that must be called every time the time display interval has elapsed. TimerProcedure has the format: TmerProcedure = Procedure;

TomasProcess normally checks every event if some Windows message must be handled. Because this checking is very time consuming, you can influence the number of times checking takes place by:

Procedure SetMessageProcessInterval(MPInt: Integer);
This procedure sets the number of events before windows messages will be checked.

As mentioned in TomasProcess, models can be developed independently and be run synchronised by using TomasServer. If no TomasServer is specified, the model will run stand alone. If a server address is specified however, we must be able to send messages to and react on messages from the server. For this purpose the following methods are available:

Procedure SetServerName(SvName: String);
Sets the ServerName to SvName. This method only has effect before the simulation starts.

Procedure SetModelName(MName: String);
Sets the model name to Mname. By this name the model will be identified to the Server.

Procedure SendMessageToModel(Model,Msg: String);
You can send messages to other models; specify the model name in ‘Model’ and the message in Msg. The message is sent as specified in TomasProcess.

Procedure SendMessageToServer(ServerMsg: String);
You can send messages to the server also; specify the message in Msg. The message is sent as specified in TomasProcess.

Procedure SetReceive(RcvProc: ReceiveProcedure);
Whenever TomasProcess receives an message by the server, it cannot recognise, it will call this procedure. Then the model is able to analyse the message contents and take actions accordingly. ReceiveProcedure is of type Procedure(Msg: String).
Procedure ConnectServer;
Establishes a connection to the Server if a server address is specified.

Procedure DisConnectServer;
Disconnects from the Server.

Procedure StartLogging;
Starts the logging of messages between the model and the Server. Logging is done in a file with name the ModelName and extension ‘.log’.

Procedure StopLogging;
Stops the logging.

Procedure SetAnswerProc(AnswerProc: AnswerProcedure);
This method is called whenever a question is received. Remember: messages are used for asynchronous communication, questions for synchronous communication. AnswerProcedure is of the type:

AnswerProcedure = Procedure(Q: TMsgString; Source: String);

Procedure SendQuestionTo(Model: String; Var Question: String);
Sends a question ‘Question’ to model ‘Model’ and waits for an answer. The answer is returned in the variable ‘Question’.

Procedure SendReply(Destination,Reply: String);
Sends a reply ‘Reply’ to a model ‘Destination’.

Tomas form

A simple form has been added to TOMAS to support interactive control and presentation of the simulation run.

The form shows at runtime as:

[image: image6.jpg]
In the upper part a control menu is present to control the simulation. Below that a line with buttons is available to set or reset the simulation settings. Pressing one of thes buttons opens a panel as shown at the right hand side of the form.

On the left hand side a memo field is visible. The memo is visible only if the trace checkbox is checked. In tracing mode each relevant message is added to the tracememo. Each change of state and each change of queue contents is then reported in the memo. For this purpose all methods involved call the CheckTrace method of TOMAS. This method checks if the Trace is on; if so, it adds a formatted message to the memo.

The message can be preceded by a time stamp of the walltime clock by checking the "Clock Time" checkbox.

Because each of elements in a Standby status generate a mesage every time that their condition is checked, these messages are exclude. You can include them by checking the "Trace Standby" checkbox.

On the bottom one sees a status bar showing the current time, the current number of elements in the model and the current number of queues.

Also you can decide to continue the simulation in step mode. This means the simulation interrupts after each event and waits for a signal to perform the next event. After choosing for step mode a button appears; pressing this button informs the sequence mechanism to do the next event.

The control menu gives you the facilities to control the simulation itself.

The following items are contained in the menu (they all have programmable counterparts).

Start

to start the simulation.

Interrupt
to interrupt the simulation immediately

Resume

to resume the simulation after an interrupt

Quit

to finish the simulation.

Pressing the elements panel or queues panel in the status bar at the bottom will open a new form where the currently available elements or queues are shown.

Part III.

TOMASResources

 Semaphores and Resources

User manual

Introduction

TOMAS only defines general TomasElements and TomasQueues. In many logistic and production environments the problems concentrate on limited capacities.

Limited capacity occurs in two ways:

TomasElements want to use the same capacity of some resource. For example cars want to enter a highway at the same entrance point.

For this purpose the ‘TomasSemaphore’ is introduced.

Some general elements are handled by a TomasElement with limited capacity. For example a machine in a factory is used for different jobs. This kind of problems can easily be modelled with the ‘TomasResource’ concept. A TomasResource is a descendant of a TomasElement.

A Tomassemaphore is an object to share limited capacity between active TomasElements (the claiming TomasElements will be delayed. A TomasResource is a TomasElement itself to share limited capacity between arbitrary objects.

The TomasSemaphore

A TomasSemaphore is an object to handle limited capacity problems. Elements can ask for, wait for and release a certain capacity level of a semaphore. The TomasSemaphore is a basic object class.

A TomasSemaphore has the following published methods:

Constructor Create(SName: String; CMin,CMax: Double; Selection: SelectionFunction);
Create creates a semaphore with name SName, lowerbound capacity of CMin and upperbound of Cmax. After releasing capacity the SelectionFunction 'Selection' is called to select the next claiming entity. The user can write his own SelectionFunction, but the following selection functions are standard available in TOMASResources:

 FIFOSelect: First In First Out.

 LIFOSelect: Last In First Out.

 SCCSelect: Smallest Capacity Claim First

 GCCSelect: Greatest Capacity Claim First.

Destructor Destroy;

Destroys the TomasSemaphore instance. Advice: always use the standard ‘free’ method to destroy the instance. This destroy method is called implicitly by Free.

Function Available: Double;
The Available-method is meant to investigate if a request of capacity can be honored. The function returns the available amount of capacity.

Procedure Claim(X: Double);

This method asks for X amount of capacity. If not available then it waits for the amount to become available; this means the CurrentElement will be put into the Claiming state and control will be given to the sequence mechanism. The Element can be reached by the FirstClaimer and NextClaimer methods. During the waiting the user can ask for the amount of capacity a Element is waiting for, by the ClaimSizeOf-method.

Procedure Release(X: Double);
The Release method releases X amount of capacity immediately. The semaphore then investigates which claiming Elements can be allowed by call(s) to the attached selectionfunction.

Function FirstClaimer: TomasElement;

This method returns the first Element claiming this semaphore. The Elements are sorted by arrivaltime at the semaphore.

Function NextClaimer(C: TomasElement): TomasElement;
NextClaimer returns the successor of C claiming for this semaphore

Function NrOfClaimsWaiting: Word;
This function returns the number of elements currently claiming for this semaphore.

Function NrOfUsers: Word;

NrOfUsers returns the number of Elements currently using the semaphore capacity

Procedure ChangeCapacityBounds(CMin,CMax: Double);
The method ChangeCapacityBounds changes the lower- and upperbound of the semaphore. By this the user is able to close or open semaphores. When capacity is decreased, the capacity already in use will stay in use until released. When capacity is increased, then the claiming for capacity is immediately checked.

Function UseLevel: Double;
UseLevel returns The current occupation of the semaphore.

Function ClaimSizeOf(Elm: TomasElement): Double;

This function returns the amount of capacity Elm is waiting for.

The TomasResource

The TomasResource is a descendant of TomasElement. It has a well-defined Process-method

and semaphore-like methods. Not only quantities but also durations are involved. A Resource is automatically scheduled and triggered by claim requests or endings.

The TomasResource has the following methods:

Procedure Process;

This method overrides the default Process ofa TomasElement.

Constructor Create(RName: String; CMin,CMax: Double; Selection: SelectionFunction; Delivery: TList);
Create creates a TomasResource with name RName, Lowerbound capacity CMin and Upperbound CMax.You can specify a Delivery list where items will be put when the claim is released. If Delivery is Nil the items stay in the outputqueue of the TomasResource. You can use then the FirstOutItem and DeliverItem to inspect and deliver items at wish.

After releasing capacity the SelectionFunction 'Selection' is called to select the next claiming entity. The user can write his own SelectionFunction, but the following are standard available in TOMASResources:

 FIFOSelect: First In First Out.

 LIFOSelect: Last In First Out.

 SCCSelect: Smallest Capacity Claim First

 GCCSelect: Greatest Capacity Claim First.

Destructor Destroy;

Destroys the TomasResource instance. Advice: always use the standard ‘free’ method to destroy the instance. This destroy method is called implicitly by Free.

Function Available: Double;
The Available method is meant to investigate if a request of capacity can be honored. The function returns the available amount of capacity.

Procedure Claim(Item: Pointer; X,Duration: Double);
Claim asks for X capacity-units during Duration time-units. This claim is related to some userdefined ‘item'. If this claim -after Duration- is completed, then the item will be put into the outputside of the resource. The user can ask whether the item arrived in output by means of the CheckReady method.

Function FirstClaimer: Pointer;

This method returns the first item claiming this resource. The items are sorted by arrivaltime at the resource.

Function NextClaimer(P: Pointer): Pointer;

NextClaimer returns the successor of P claiming for this resource.

Function NrOfClaimsWaiting: Word;
This function returns the number of items currently claiming for this resource.

Function NrOfUsers: Word;
NrOfUsers returns the number of items currently using the resource.

Procedure ChangeCapacityBounds(CMin,CMax: Double);
The method ChangeCapacityBounds changes the lower- and upperbound of the resource. By this the user is able to close or open resources.When capacity is decreased, the capacity already in use will stay in use until released. When capacity is increased, then the claiming for capacity is immediately checked

Function UseLevel: Double;

UseLevel returns the current occupation of the resource.

Function CheckReady(Item: Pointer): Double;
The CheckReady method returns the arrivaltime of Item at the outputside of the Resource. It returns -1 if Item is not yet available on the outputside.

Function FirstOutItem: Pointer;

FirstOutItem returns the first item from the outputside but does not remove it.

Procedure DeliverItem(Item: Pointer);
DeliverItem delivers the item if it is at the outputside and removes the item from the resource.

Part IV.

TOMASGraphics

Showing time series and histograms

User manual

1. Introduction

To support graphical representation two units are added to the TOMAS environment: TomasGraphicsForm and TomasCollectionForm. TomasGraphicsForm is used to define the settings of datacollections, while TomasCollectionForm provides the graphical representation in terms of figures, consisting of one or more datacollections.

The basic class from the user’s point of view is the TOMASCollection. It is derived from the internal class TOMASCollectionData, which contains all method for collecting data and representation. For high level use only two methods are needed: ‘Create’ and ‘Collect’.

TOMASGraphicsForm enables the user to define how datacollections will be shown, TOMASCollectionForm performs the defined tasks.

TomasGraphicsForm

When you include TomasGraphicsForm in the uses clause of your model, a GraphicsForm is created. It shows minimized at the bottom left of your application. Each time a collection is defined in your source code, the collection is added to the form. So for example in our lock-model three collections are defined and created by:

Var

 Waiting: Array[Left..Right] of TomasCollection;

 LeadTime: TomasCollection;

. . .

. . .

Waiting[Left]:=TomasCollection.Create('Waitingtime ships arriving left');

Waiting[Right]:=TomasCollection.Create('Waitingtime ships arriving right');

LeadTime:=TomasCollection.Create('Passing time');

If we enlarge the GraphicsForm it will look like this.

[image: image1.jpg]In this form you see all defined TomasCollections. The first column shows the defined title of the collection, the second column says it will not be represented, the third column shows the color for representation and the last column can be used to specify a file name where the collection will be saved in CSV-format at the end of the simulation run.

Clicking the second colum a combobox will appear with initially two options: ‘Hidden’ and ‘New Figure’. Selecting ‘New Figure’ a TomasCollectionForm will open with caption ‘Figure 1’. Now the collection will be shown in this Form. Clicking again the second column for another collection, the combobox appears again but Figure 1 is added to the options. Choosing Figure 1 the collection is added to this Form, so a combined view of both collections will be shown. The next screen shows the situation where the waitingtime collections are added to Figure 1 and the passing time is added to Figure 2.

[image: image2.jpg]
Clicking on the third column a color dialog will appear where you can choose the color for the graphical presentation. Finally you can define whether or not you want the collection to be saved for use in spreadsheet environments by entering filenames in the rightmost column.

Having done so, the form shows as:

[image: image3.jpg]
Now the graphics are prepared for the simulation run. If you want to save these settings (including the position and size of the collectionforms Figure 1 and Figure 2), press the ‘Save Settings’ Button. A file dialog will appear where you can specify a filename to keep these settings in. For other runs you can recall the settings by pressing the ‘Load Settings’ buttton and selecting the right file. Saved settings can also be loaded programmatically by means of the general method ‘LoadSettings(F: FileName)’.

Adding data to collections

During a simulation run you can add data to a collection by using the method ‘Collect(X,Y)’.

Collect adds a pair of values to the collection: an independent variable X and a dependent variable Y. Mostly X will represent time.

So the above mentioned collections are easily filled by the following in the ship’s process:

Waiting[ShipSide].Collect(TNow,TNow - QueueTime(Lock.Q[ShipSide]));

to register the waitingtimes (depending on the ships’s arrivalside) and

LeadTime.Collect(TNow,TNow - ArrivalTime);

to register the passingtime of the ship.

Every time a collect statement is executed, the figure is updated to visualize this change.

How this is done is explained in the next paragraph.

TomasCollectionForm

As mentioned in par. 2 a TomasCollectionForm is created for each Figure, that is defined in the GraphicsForm. A Figure contains one or more collections and deals primarily with the way the presentation is done for this set of collections. A Figure form is shown below.

[image: image4.jpg]
At the bottom of the form some significant statistics of the collections are shown: the number of observations so far, the average value, the standard deviation, a 95% quantile and the registered maximum value. The 95% quantile is first calculated after the collection of 100 values. Before that it will show as 0, after that it will be refreshed after each collection (see the developer’s manual if you want to know why).

At het top of the form a menu is shown to select the type of figure, the set the range of X- and Y-axis and to print the form.

There are four basic types of a figure:

a bar: each collected value is shown as a bar at the X-value with height Y.

a graph: a connecting line between successive Y values

a histogram

none: no figure is shown (for example to speed up the simulation).

Depending on the type of figure, you can set the significant values of the X- and Y-axis by clicking this menuitem.

For Bar and Graph you can specify the absolute bounds of the Y-axis and the lowerbound and range of the X-axis. Whenever a value is collected at a X value right of the current X-axis, the axis is shifted left half the range. So when the minimum of X is 0 and the range is 1000, then collecting a value at X = 1100 wille shift the X-axis to lowerbound 500.

In case of a histogram view, selections are shown in the figure below.

[image: image5.jpg]
Remember: in a histogram the X-axis represents the original Y-values, divided over classes and the Y-axis is a percentage axis. So at the X-xis you can specify the minimum value, the number of classes and the classwidth. Above that you can specify if you only want to see the class percentages, or the cumulative percentages or both.

Finally the print menuitem opens a printer dialog for the form. The form will be printed in a ‘PrintToFit’ manner; this means the image will be scaled to fit on the printer page.

Part V.

Distributed simulation in TOMAS

User manual

Synchronization

To establish the communication between submodels and synchronize them to the same time-axis, TomasWeb offers a client-server concept. The server 'TomasServer' acts as the communication centre and decides which submodel is allowed to perform the next event. For this purpose TomasProcess is extended to check the availability of TomasServer and to ask allowance for progress. This synchronisation is completely transparent to the user model.

Communication is technically based on the TCP/IP socket protocol and consists of plain ASCII-text messages. Predefined messages are used for synchronisation purposes; above that submodels can communicate with each other with their own messages. To support an easy decomposition of messages a class TMsgString is available in Tomas.

First the client server concept for simulation progress will be explained in detail. After that communication between submodels will be illustrated with an example (a system where ships must pass two locks in sequence; each lock is modelled in a separate submodel).

The client server concept

This concept consists of one TomasServer and one or more Tomas models. The server has one server socket, while each model has it's own client socket. The client sockets address the server socket as the destination of their messaging.

The only thing to be known to establish communication is the address where the server resides. This address is the IP address of the machine running the TomasServer program. If the machine is the same as the one for the model(s) the server address can be referred to as 'localhost'.

The server address can be entered in the control menu of the Tomas form, but also in the program by 'SetServerName(address string)'.

At simulation start a model looks for the server address and tries to make a connection with the server (if the serveraddress is empty the model runs stand alone). The server is 'listening' on the server socket and if a connection call is detected, the server sends a 'hello' message containing a unique code for the model. The model waits for this confirmation and then sends a 'name' message with it's model name. This model name can be used by other models to communicate with this model. The model name is the application name by default, but can be changed by a 'SetModelName(namestring)' procedure call.

After this the model sends the first eventtime to the server, that now waits for a 'start simulation' order. This can be done manually by means of the start button on the server form.

But it can also be initialized by a client model by sending a start-message with the total number of submodels to be expected. When this number of submodels has connected to the server, the server starts the simulation by allowing the first model to proceed.

All these messages (except the start message) are being done automatically by TomasProcess and the server. In this way synchronization between the models is guaranteed and they run as one big stand alone model.

The submodels can use the sockets for inter model communication or to send messages to the server.

Communication with another model is performed by the procedure SendMessageToModel(model_name, message_text);

Communication with the server is also allowed by means of SendMessageToServer(message_text); The server however only understands predefined messages as explained in the message formats chapter.

If the message_text of a message to another model satisfies to the syntaxis of a '!!' separated string, a TMsgString object can be used to analyze the message_text in a way, comparable to the reading of an ASCII-text with TomasRead. TMsgString enables the use of GetInteger, GetDouble etc.

Message formats

Te following messages are predefined and the keywords (starting with '$$') should only be used for the assumed purpose. The italic terms are parameters. Not shown but always present is the LFCR at the end of each message, because we use a line based communication.

A1. Server to Model

1. Confirmation message: "$$hello:clientcode". Used to acknowledge a connection and assigning a unique clientcode to the model.

2. Do event message: "$$continue:eventtime". The model receiving this message is allowed to perform it's next event.

3. Stop simulation message: "$$stop" is sent to all models to stop the simulation.

4. Simulation time message: "$$simtime:time" to send the current simulation time.

5. Real time message: "$$time:time" to send the clock time of the server machine.

6. Client message: "$$from:model_name!!message_text" to send a message from model model_name to another model (the destination is part of the original message).

7. Clients message: "$$clients:nr_of_clients!!client_name1!!clientcode1!!connectiontime1!!...

 !!client_nameN!!clientcodeN!!connectiontimeN');

8. Unknown message: "$$unknown:message_text" is sent if the message isn't recognized by the server. The message_text is the original received message.

A2. Server to arbitrary program

In this case the server will only send messages 1,4,5,6, 7 and 8. Remember the Do event and Stop simulation messages don't have any meaning here.

B1. Model to Server

1. Model name message: "$$name: clientname" sent by TomasProcess to identify the model.

2. Next event message: "$$contine: eventtime" sent by TomasProcess to ask for continuation at time eventtime.

3. New event message: "$$contnue: eventtime" sent by TomasProcess if a new event is generated by a user procedure. New events can be generated by the messaging mechanism (see reception of messages).

4. Start simulation message: "$$start:number_of_clients" to control the start of the simulation by one of the client models. Whenever the server has connection with number_of_clients models then the simulation will be started.

5. Stop simulation message: "$$stop" means all clients should stop the simulation now.

6. Simulation time message: "$$simtime" to ask the server for the current simulation time.

7. Real time message: "$$time" to ask the server for the current real time.

8. Clients message: "$$clients" to ask the server for a list of clients.

9. Message to another model: "toclient:client_name!!message_text" to send a message to another model.

Messages 1, 2, 3 and 9 are used by TomasProcess. Message 9 can be forced by the user by the SendMessageToModel procedure. Messages 4 until 8 can be called with the SendMessageToServer procedure.

B2. Arbitrary program to Server

Only the messages 2 and 3 of B1 will not be used.

Reception of Messages

TomasProcess is the unit containing the socket, which will react on the server messages. First TomasProcess will see if the messages is meant for simulation control (hello, do event and stop).

The other messages will be passed to Tomas. Tomas reacts on the reception of the message by calling a 'receiveprocedure'. The user is able to assign his own receiveprocedure by means of the Tomas-statement 'SetReceive(RcvProc: Receiveprocedure). A Receiveprocedure has a type declaration of ' ReceiveProcedure = Procedure(Msg: String)'. After assignment the procedure can handle the message.

Making the connections

The sequence to establish a multi model session is as follows:

1. Start up the TomasServer at some location. The server form shows up with 'waiting for clients...'.

2. Set the ServerAddress in each submodel to the location of the TomasServer.

The location is the IP-address of the machine. In case this is the same machine then the location can be specified as 'localhost'.

3. Assign a receiveprocedure in each submodel .

4. Start each submodel (manually by 'control-start' in the menu or automatically by 'startsimulation'). At the start of each model the server displays some lines of the starting connection.

5. Start the simulation (by pressing the start button in the server form or by sending a start message from one of the client models).

Example

The following example shows a session with two submodels. Each submodel is a model of a lock system as can be found on the Tomas page. There is one lock on the left side and one lock on the right side. In the lock on the left side ships are generated from the left. After passing this lock the ship must be transferred to the lock on the right side and pass this lock. After passing this lock on the right side the ship is destroyed. Ships from the right side are analogously processed.

We will restrict the description to ships arriving from the leftside. Suppose the lock models are called plockleft and plockright. The complete example can be downloaded from the examples page.

Contrary to the one-lock-system the left lock only generates half of the number of ships: only the ships arriving left. At the end of the ship's process the ships from the left must be passed to the lock on the right. This is accomplished by:

SendMessageToModel('plockright',Name + '!!' + FormatFloat('0.00',ShipLength)

 + '!!' + FormatFloat('0.00',TNow + 20));

We send to 'plockright' the message that a ship named 'name' with a length 'ShipLength' will arrive at Tnow + 20 (suppose this is the sailing distance betwen the locks).

Now the server receives the message and looks for the presency of plockright. If present the message is reformatted to a client message and sent to plockright.

Plockright assigned a receiveprocedure by means of 'SetReceive(ReceiveShipsFromLeft);'

The procedure ReceiveShipsFromLeft looks as:

Procedure ReceiveShipsFromLeft(Msg: String);

 Var

 Q: Integer;

 Nm: String;

 L,T: Double;

 NewShip: TShip;

 MsgL: TMsgString;

 Begin

 If Pos('$$from:',Msg) <> 0 Then {must be a ship from the right}

 Begin

 Q:=Pos('!!',Msg); {after first !! the real message starts}

 Msg:=Trim(Copy(Msg,Q+2,Length(Msg)-Q-1));

 MsgL:=TmsgString.Create(Msg);

 {MsgL is now 'shipid!!shiplength!!arrivaltime-at-lock'}

 Nm:=MsgL.GetString;

 L:=MsgL.GetDouble;

 T:=MsgL.GetDouble;

 MsgL.Free;

 NewShip:=TShip.Create(Nm,L,Left);

 NewShip.Start(T);

 End;

TomasServer

Model 1

Model n

Client socket 1

Client socket n

Server socket

