TomasProcess

A kernel module for discrete process simulation

TOMASPROCESS: sequencing mechanism for process oriented discrete event simulation

1. Introduction
TOMASPROCESS contains the basic methods for the process oriented discrete event simulation.

The description is divided into three parts:

1. Methods for process control

2. Class of process elements

3. General supporting routines.

A precompiled version is available for Delphi 5 (TomasProcess.dc5), Delphi 6 (TomasProcess.dc6) , Delphi 7 (TomasProcess.dc7) and Delphi 2005 (TomasProcess.dc2005).

For ease of use in your source programs, you are advised to copy the right version into the

LIB-directory of your Delphi-environment and rename the corresponding file to TomasProcess.dcu.

TomasProcess can be included in any user-built simulation environment. In this platform an

example of such a platform is given by the TOMAS source code, which offers added

functionality such as user friendly simulation control, queues and distributions.

If you are only interested in a useable and easy to understand simulation environment

you can skip TomasProcess and proceed with TOMAS; you only have to copy it to your

LIB-directory (or a directory included in your library path) as explained above.
2. Methods for process control
TOMASPROCESS uses a time-axis to sort events. At any moment during a simulation always one and only one process is the current process. When a process reaches a point where the status of the process doesn't change for some amount of time, the process needs a method to communicate this to the sequencing mechanism. The following methods are available to do this (the current time of the simulation is assumed to be Now).

Procedure HoldProcess(T: Double);

this method suspends the process for T time units. The process will become current
again at Now + T.

Procedure StandByProcess;

StandbyProcess suspends the process until some condition is met.

The usual programming structure to achieve this is:

While Condition = FALSE Do StandbyProcess;

Procedure SuspendProcess;

This method suspends the process for indefinite time. Some external process is needed

to make this process current again (see scheduleprocess of TomasProcessElement).

Procedure FinishProcess;

By this method the current process is finished. The owner of the process (a
TomasProcessElement) stays available.

Procedure FinishProcessAndDestroy;

FinishProcessAndDestroy finishes the current process and destroys the owner of the
process.

Because the sequencing mechanism runs in a user environment, where interaction or intermediate results are needed, we need to have methods for control the sequencing mechanism itself. This can be done with:

Procedure StartProcessSimulation;

This method gives control to the sequencing mechanism and starts the simulation with a
process being scheduled there.

Procedure InterruptProcessSimulation;
By this method you are able to interrupt the simulation (i.e. stopping the simulation clock) and do whatever is needed in your own environment.

Procedure ResumeProcessSimulation;

ResumeProcessSimulation resumes the simulation after it has been interrupted.

A special method can be defined to take actions whenever the simulation state changes.

For this purpose the following method is available:

Procedure SetStatusChange(ChangeProc: ChangeProcedure);
Specify here which procedure should be called whenever the state changes. You can decide in this procedure on what to show on the screen, when to interrupt the simulation etc.

In your statuschange procedure you can check what kind of change takes place. To investigate this the following functions are available:

Function TracingMessage: Boolean returns TRUE if there is a message useful for tracing purposes.

Function TraceLine: String returns the tracing message. Typical trace messages from the TomasProcess environment concern the change of current process and status of connections with a server-program.

Function ServerQuestion: Boolean to show there is a question from a Server program.

Function ServerMessage: Boolean to show there is a message from a Server Program.

See also chapter 4 of the general supporting routines

Finally the status of the simulation itself is specified by the type 'SimulationStatus', which can take the following values:

S_INIT:

simulation not started yet.

S_FINISHED:
simulation has finished

S_INTERRUPTED:
simulation is interrupted

S_RUNNNG:
simulation is running

S_STEPRUNNING:
simulation is running but will be interrupted after each event.

The simulationStatus can be retrieved by Function GetSimulationStatus: SimulationStatus;
3. Class of process elements
Every process is owned by a TomasProcessElement. It is a direct descendant of the basic Delphi class TPersistent. This general class contains all methods to inform the sequencing mechanism of it's presence and it's process description.

The class has the following properties and methods:

Name:
The name of the element

Status:

The current status of the element.

This field is of type ElementStatus and can take the following values

 TC_DATA:

The element is inactive

 TC_PASSIVE:

The element is suspended

TC_INTERRUPTED:

The element is interrupted

TC_TIMESCHEDULED:
The element is scheduled for a specific moment

 TC_STATESCHEDULED:
The element is scheduled for a condition

 TC_CURRENT:

The element has the current process.

ArrivalTime:
The creation time of the element

EventTime:
The next event time of the element's process. Returns NEVER if the element is not scheduled.

Constructor Create(Name: String; CTime: Double);

creates an instance of TomasProcessElement called Name at time CTime.

Destructor Destroy;
destroys the instance. Advice: Always use the Free-method, which implicitly calls ‘Destroy, but always checks for the validity of the instance!

Procedure Process;

is a virtual method representing the process description of the element class.

You must override this method if the element owns a process. If you don't override,

but still activate the element a warning message is given.

Procedure ScheduleProcess(T: Double);

a method to initiate or resume the process of the element at time T.

Procedure RemoveProcess;

a method to cancel or finish the process when the element is not current.

Procedure InterruptProcess;

A method to interrupt the process. If interrupted the process can be resumed finishing it’s current hold or standby period.

Procedure CancelProcess;

A method to cancel the hold, standby of suspended state of the element. To restart the process you need to schedule it again.

Function Scheduled: Boolean;

returns TRUE if the element has a next event time or condition.

4. General supporting routines
To gain control over the sequencing mechanism some additional methods have been added.

The major goal of the first group of methods is to support the verification phase. With these methods you can interrupt the simulation or looking at it event by event. The methods are:

Procedure SetBreakTime(T: Double);

This method informs the sequencing mechanism that the simulation msut be interrupted

at T. If T < Now then this method has no effect.

Function GetBreakTime: Double;

Returns the currently set BreakTime. If no Breaktime is set, it returns -1.

Procedure SetKeyPressed(C: Char);

This method offers a way to interrupt the simulation by pressing the spacebar.

It will be extended to more key characters in future.

Procedure SetStopTime(T: Double);

Informs the sequencing mechanism to stop the simulation and to return to the statement
directly following the StartProcessSimulation statement.

If no StopTime is set, the simulation ends only, when there are no events available.

Function GetStopTime: Double;

Returns the currently set StopTime. If no StopTime is set it reurns -1.

Procedure StartStepMode;

Forces the sequencing mechanism to wait after each event for a PerformNextEvent call.

So after each event the user is able to look in detail to the state changes.

Procedure StopStepMode;

Disables the StepMode.

Procedure PerformNextEvent;

Tells the sequencing mechanism to perform the next evenet on the event chain.

Procedure ResetTomasProcess;

Clears the sequencing mechanism, closes a connection with a server-program (if present) and resets time to zero.

Procedure SetProcessingInterval(Pint: Integer);

By default TomasProcess checks every event if there are Windows messages to be processed (otherwise interaction with the application would be impossible). This checking however takes about 50% of the time needed by the sequencing mechanism. In cases with thousands of events you can speed up the model by decreasing this amount of checking. Just specify the number of events after which TomasProcess should check for Windows messages.

The second group of routines provides information on variables of TomasProcess. These are:

Function GetNow: Double;

Returns the current time of the simulation.

Function CurrentProcessElement: TomasProcessElement;

Returns the current TomasProcessElement (and Nil if the simulation isn't running).

Function TracingMessage: Boolean;

Returns TRUE is TomasProcess has prepared a message, which could be useful for the tracing of events. These messages inform the environment about the current element and the connection status (see next group of routines)

Function TraceLine: String;

This function returns the datastring, mentioned above, and clears it.

Finally the last group of routines is concerned with connecting models via a TCP/IP interface.

TomasProcess supports communication between models. There must be a TomasServer at some specified ServerAddress (IP-address). TomasServer synchronizes the different models to one time-axis. TomasProcess knows two types of communication:

· messages; they are sent or received to and from the TomasServer and processing continues.

· Questions; they are sent to the TomasServer and program execution is suspended until an answer is received.

Procedure GoSetModelName(Name: String);

By entering a unique modelname, communication can be made unambiguous.

Procedure SetServer(Srv: String);
This method sets the serveraddress of TomasServer; if no ServerAddress is set, pure local standalone simulation is assumed.

A valid ServerAddress fullfills all conditions of a normal IP-address. If TomasServer is
located at the same machine, 'localhost' can be specified (but in general 127.0.0.1 refers
also to this machine).

Function GetServer: String;

Returns the ServerAddress, set by SetServer.

Function ServerMessage: Boolean;

Returns TRUE is a message of TomasServer is received. This method will normally be
called in the StatusChange procedure.

Function ServerQuestion: Boolean;

Returns TRUE is a question of TomasServer is received. This method will normally be
called in the StatusChange procedure.

Procedure QuestionParms(var Question, Source: String; Var ID: integer);

In case of a question received, this procedure fills the field Question with the contents of the question, the field Source with the sender of the question and ID with the unique ID of the question. A reply should provide this ID (see DoSendReplyTo);

Function MessageLine: String;

Returns the message received of TomasServer and clears it. By setting up conventions on
the messagecontents a very flexible way of communication can be developed.

Procedure SendModelMessage(Model, Msg: String);

Sends a message 'Msg' to model 'Model'. The layout of the resulting message string will
be: '$$tomodel: ' + Model +'//' + Msg + #13#10.

Procedure DoSendQuestionTo(Model: String; Var Question: String);

Sends a question ‘Question’ to model ‘Model’ and waits for an answer. The reply is received in the Question field.

Procedure DoSendReplyTo(Model,Reply: String; ID: Integer);

Sends a reply ‘Reply’ to model ‘Model’ as an answer to the question with the identity ID.

Procedure DoStartLogging;

Starts the logging of all messages sent and received in a log file. The log file is named to the model name with extension ‘.log’.

Procedure DoStopLogging;

Finishes the logging of messages.

Starting a simulation run automatically connects to the TomasServer if a server address is specified and disconnects automatically at the end of the simulation. However, many control programs aren’t simulation models at all, but only algorithms that are called by a simulation model to make decisions. If a control program is implemented in a separate application, one should be able to connect and disconnect from the server explicitly. Therefor the following methods are implemented:

Procedure CheckServer;

Checks if a connection is made; if not it connects to the specified Server.

Procedure DisconnectFromServer;

Disconnects from the Server.

